We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2021 was released on December 1st 2021. Its digital version will be available immediately.

Topic: Measurement, testing, quality care

Market, trade, business
What to keep in mind when changing energy providers

SVĚTLO (Light) 6/2021 was released 11.29.2021. Its digital version will be available immediately.

Fairs and exhibitions
Designblok, Prague International Design Festival 2021
Journal Světlo Competition about the best exhibit in branch of light and lighting at FOR ARCH and FOR INTERIOR fair

Professional literature
The new date format for luminaires description

Stanford researchers’ artificial synapse is fast, efficient and durable

29. 4. 2019 | Stanford University | www.stanford.edu

The brain’s capacity for simultaneously learning and memorizing large amounts of information while requiring little energy has inspired an entire field to pursue brain-like – or neuromorphic – computers. Researchers at Stanford University and Sandia National Laboratories previously developed one portion of such a computer: a device that acts as an artificial synapse, mimicking the way neurons communicate in the brain.

In a paper published online by the journal Science, the team reports that a prototype array of nine of these devices performed even better than expected in processing speed, energy efficiency, reproducibility and durability. Looking forward, the team members want to combine their artificial synapse with traditional electronics, which they hope could be a step toward supporting artificially intelligent learning on small devices.

Artificial synapse

The team’s artificial synapse is similar to a battery, modified so that the researchers can dial up or down the flow of electricity between the two terminals. That flow of electricity emulates how learning is wired in the brain. This is an especially efficient design because data processing and memory storage happen in one action, rather than a more traditional computer system where the data is processed first and then later moved to storage.

Read more at Stanford University

Image Credit: Armantas Melianas a Scott Keene

-jk-