We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2021 was released on December 1st 2021. Its digital version will be available immediately.

Topic: Measurement, testing, quality care

Market, trade, business
What to keep in mind when changing energy providers

SVĚTLO (Light) 6/2021 was released 11.29.2021. Its digital version will be available immediately.

Fairs and exhibitions
Designblok, Prague International Design Festival 2021
Journal Světlo Competition about the best exhibit in branch of light and lighting at FOR ARCH and FOR INTERIOR fair

Professional literature
The new date format for luminaires description

Engineers produce smallest 3-D transistor yet

10. 12. 2018 | MIT | www.mit.edu

Researchers from MIT and the University of Colorado have fabricated a 3-D transistor that’s less than half the size of today’s smallest commercial models. To do so, they developed a novel microfabrication technique that modifies semiconductor material atom by atom.

The inspiration behind the work was to keep up with Moore’s Law, an observation made in the 1960s that the number of transistors on an integrated circuit doubles about every two years. To adhere to this “golden rule” of electronics, researchers are constantly finding ways to cram as many transistors as possible onto microchips. The newest trend is 3-D transistors that stand vertically, like fins, and measure about 7 nanometers across — tens of thousands of times thinner than a human hair. Tens of billions of these transistors can fit on a single microchip, which is about the size of a fingernail.

3D transistors

As described in a paper presented at this week’s IEEE International Electron Devices Meeting, the researchers modified a recently invented chemical-etching technique, called thermal atomic level etching (thermal ALE), to enable precision modification of semiconductor materials at the atomic level. Using that technique, the researchers fabricated 3-D transistors that are as narrow as 2.5 nanometers and more efficient than their commercial counterparts.

Read more at MIT

Image Credit: MIT

-jk-