We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2017 was released on November 6th 2017. Its digital version will be available on November 27th 2017.

Topic: Electrical distribution switchboards and switchboard technology; Rotating electrical machines

Main Article
Analysis of the CFD settings for simulating the temperature field of sinusoidal filter
On-line optimisation of current commutation angles in phases of BLDC motor

SVĚTLO (Light) 5/2017 was released on September 18th 2017. Its digital version will be available on September 18th 2017.

Luminaires and luminous apparatuses
MAYBE STYLE introducing LED design luminaires of German producer Lightnet
TREVOS – new luminaires for industry and offices
How many types of LED panels produces MODUS?
Intelligent LED luminaire RENO PROFI

Interiors lighting
The light in indoor flat interior – questions and answers

World's thinnest hologram paves path to new 3-D world

19.05.2017 | RMIT University | www.rmit.edu.au

An Australian-Chinese research team has created the world’s thinnest hologram, paving the way towards the integration of 3D holography into everyday electronics like smart phones, computers and TVs.

Interactive 3D holograms are a staple of science fiction – from Star Wars to Avatar­­ – but the challenge for scientists trying to turn them into reality is developing holograms that are thin enough to work with modern electronics. Now a pioneering team led by RMIT University’s Distinguished Professor Min Gu has designed a nano-hologram that is simple to make, can be seen without 3D goggles and is 1000 times thinner than a human hair.

The thinnest hologram in the world

The RMIT research team, working with the Beijing Institute of Technology (BIT), has broken the thickness limit with a 25 nanometre hologram based on a topological insulator material – a novel quantum material that holds the low refractive index in the surface layer but the ultrahigh refractive index in the bulk.

Read more at RMIT University

Image Credit: RMIT University/Youtube

-jk-