We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2016 was released on November 7th 2016. Its digital version will be available on December 1st 2016.

 

Topic: Switchboards and switchboard engineering; Rotating electrical machines and power electronics; Maintenance of EE

 

Main Article

Lithium traction batteries for electric mobility (part 1)

SVĚTLO (Light) 6/2016 was released on December 5th 2016. Its digital version will be available on January 5th 2017.

Interiors lighting
Colloquium Interiors 2016 – the fifth anniversary
Cooperation of indoor interior and lighting 

Standards, regulations and recommendations
New standards for road lighting

Weird material shrinks when warm

14.10.2015 | UCONN | today.uconn.edu

Most materials swell when they warm, and shrink when they cool. But UConn physicist Jason Hancock has been investigating a substance that responds in reverse: it shrinks when it warms.

Although thermal expansion, and the cracking and warping that often result, are an everyday occurrence - in buildings, bridges, electronics, and almost anything else exposed to wide temperature swings - physicists have trouble explaining why solids behave that way.

New material shrinks when warm

Research by Hancock and his colleagues into scandium trifluoride, a material that has negative thermal expansion, recently published in Physical Review B, may lead to a better understanding of why materials change volume with temperature at all, with potential applications such as more durable electronics.

The classical way to think about solids like glass, metal, and rock imagines them made of atoms hooked together by springs. The springs stretch and flex in response to heat. But because each spring, when it expands, puts pressure on its neighboring springs - and all those neighboring springs expand the same amount and exert the same pressure on the first spring and all their own neighboring springs - the forces they exert on each other should be symmetrical, and the material should neither expand nor contract.

Read more at UCONN

Image Credit: UCONN

-jk-