We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2020 was released on February 12th 2020. Its digital version will be available on March 12th 2020.

Topic: Electrical apparatus, Internet of Things; Medical technologies

Main Article
Monitoring vacancy of an intelligent building

SVĚTLO (Light) 1/2020 was released on February 3th 2020. Its digital version will be available on March 3th 2020.

Fairs and exhibitions
Invitation for Light+Building 2020 – attendant programme
Prolicht+Sound fair celebrates the 25th birthday
FOR CITY 2020 introduces oneself in parallel to FOR ARCH fair

Luminaires and light apparatuses
Modern trends in automobile headlamps

Unleashing perovskites’ potential for solar cells

08.02.2019 | MIT | www.mit.edu

Perovskites — a broad category of compounds that share a certain crystal structure — have attracted a great deal of attention as potential new solar-cell materials because of their low cost, flexibility, and relatively easy manufacturing process. But much remains unknown about the details of their structure and the effects of substituting different metals or other elements within the material.

Conventional solar cells made of silicon must be processed at temperatures above 1,400 degrees Celsius, using expensive equipment that limits their potential for production scaleup. In contrast, perovskites can be processed in a liquid solution at temperatures as low as 100 degrees, using inexpensive equipment. What’s more, perovskites can be deposited on a variety of substrates, including flexible plastics, enabling a variety of new uses that would be impossible with thicker, stiffer silicon wafers.

Perovskite solar cells

Now, researchers have been able to decipher a key aspect of the behavior of perovskites made with different formulations: With certain additives there is a kind of “sweet spot” where greater amounts will enhance performance and beyond which further amounts begin to degrade it.

Read more at MIT

Image Credit: Ken Richardson

-jk-