We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2021 was released on March 10th 2021. Its digital version will be available on March 26th 2021.

Topic: Electrical engineering in industry; Surge protection

Innovation, Technology, Projects
History of STEGO products
Industry 4.0 – past and present
Panasonic: Industrial automation products for your testing
ABB announced a significant increase in the number of charging stations in the Czech Republic

SVĚTLO (Light) 2/2021 was released 4.9.2021. Its digital version will be available 4.19.2021.

Daylight
Day lighting of recently built gymnasium by means of GLASSFLOOR

Accessories of lighting installations
DALI LINK – intelligent and economic lighting control for separate rooms
LED supplying sources with wireless interface in MEAN WELL offering

 

Ultrathin device harvests electricity from human motion

24. 7. 2017 | Vanderbilt University | news.vanderbilt.edu

Imagine slipping into a jacket, shirt or skirt that powers your cell phone, fitness tracker and other personal electronic devices as you walk, wave and even when you are sitting down.

A new, ultrathin energy harvesting system developed at Vanderbilt University’s Nanomaterials and Energy Devices Laboratory has the potential to do just that. Based on battery technology and made from layers of black phosphorus that are only a few atoms thick, the new device generates small amounts of electricity when it is bent or pressed even at the extremely low frequencies characteristic of human motion.

Ultrathin electricity generating device

The Vanderbilt lab’s ultrathin energy harvester is based on the group’s research on advanced battery systems. Over the past 3 years, the team has explored the fundamental response of battery materials to bending and stretching. They were the first to demonstrate experimentally that the operating voltage changes when battery materials are placed under stress. Under tension, the voltage rises and under compression, it drops.

Read more at Vanderbilt University

Image Credit: John Russell/Vanderbilt

-jk-