We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2019 was released on December 4th 2019. Its digital version will be available on January 4th 2020.

Topic: Measurement engineering and measuring instruments

Main Article
Innovative process in partial discharge of AC and DC voltage diagnosis

SVĚTLO (Light) 6/2019 was released on December 9th 2019. Its digital version will be available on January 9th 2020.

Professional organizations activities
Light technology konference of Visegrád countries LUMEN V4 2020 – 1st announcement
23rd International conference SVĚTLO – LIGHT 2019
56th Conference of Society for development public lighting in Plzeň
What is new in CIE

Interiors lighting
Halla illuminated new Booking.com offices in Prague centre

Ultra-lightweight ceramic material that can better withstand extreme temperatures

15.02.2019 | UCLA | www.ucla.edu

UCLA researchers and collaborators at eight other research institutions have created an extremely light, very durable ceramic aerogel. The material could be used for applications like insulating spacecraft because it can withstand the intense heat and severe temperature changes that space missions endure.

Ceramic aerogels have been used to insulate industrial equipment since the 1990s, and they have been used to insulate scientific equipment on NASA’s Mars rover missions. But the new version is much more durable after exposure to extreme heat and repeated temperature spikes, and much lighter. Its unique atomic composition and microscopic structure also make it unusually elastic.

Ceramic aerogel for spacecrafts

When it’s heated, the material contracts rather than expanding like other ceramics do. It also contracts perpendicularly to the direction that it’s compressed — imagine pressing a tennis ball on a table and having the center of the ball move inward rather than expanding out — the opposite of how most materials react when compressed. As a result, the material is far more flexible and less brittle than current state-of-the-art ceramic aerogels: It can be compressed to 5 percent of its original volume and fully recover, while other existing aerogels can be compressed to only about 20 percent and then fully recover.

Read more at UCLA

Image Credit: Oszie Tarula/UCLA

-jk-