We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2018 was released on March 14th 2018. Its digital version will be available on March 14th 2018.

Topic: Amper 2018 – 26th International trade fair for electrical engineering

Main Article
Influence of magnetic storms on transformers of the power system

SVĚTLO (Light) 2/2018 was released on March 16th 2018. Its digital version will be available immediately.

Fairs and exhibitions
Interior elite again after year in Letňany

Luminaires and luminous apparatuses
Emergency lighting
The future of industrial lighting has name INNOVA
GOLY luminaire – the practical high bay luminaire
McLED® – brand name of first rate quality LED lighting
VOLGA EU luminaire our choice for Europe

UCLA Researchers Create Exceptionally Strong and Lightweight New Metal

28.12.2015 | UCLA Engineering | engineering.ucla.edu

A team led by researchers from the UCLA Henry Samueli School of Engineering and Applied Science has created a super-strong yet light structural metal with extremely high specific strength and modulus, or stiffness-to-weight ratio.

The new metal is composed of magnesium infused with a dense and even dispersal of ceramic silicon carbide nanoparticles. It could be used to make lighter airplanes, spacecraft, and cars, helping to improve fuel efficiency, as well as in mobile electronics and biomedical devices.

Scientists created a new metal

To create the super-strong but lightweight metal, the team found a new way to disperse and stabilize nanoparticles in molten metals. They also developed a scalable manufacturing method that could pave the way for more high-performance lightweight metals.

The researchers’ new silicon carbide-infused magnesium demonstrated record levels of specific strength — how much weight a material can withstand before breaking — and specific modulus — the material’s stiffness-to-weight ratio. It also showed superior stability at high temperatures.

Read more at UCLA Engineering

Image Credit: UCLA Engineering