We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2020 was released on October 1st 2020. Its digital version will be available on October 30th 2020.

Topic: Power Engineering; Electricity transmission and distribution equipment

From Foreign Press
Protection from a faulty arc
Rack Unit

SVĚTLO (Light) 4-5/2020 was released on September 18th 2020. Its digital version will be available immediately.

Optical radiation effects and use
Plants and light in biofil interior – Part 12
Plants and lights in public areas
Melanopic day illuminance in buildings

Fairs and exhibitions
FOR INTERIOR 2020: Inspiration for habitation and trends of furniture and interiors world

Tiny device can scavenge wind energy from the breeze you make when you walk

25. 9. 2020 | Tech Xplore | www.techxplore.com

Most of the wind available on land is too gentle to push commercial wind turbine blades, but now researchers in China have designed a kind of "tiny wind turbine" that can scavenge wind energy from breezes as little as those created by a brisk walk. The method, presented in the journal Cell Reports Physical Science, is a low-cost and efficient way of collecting light breezes as a micro-energy source.

The new device is not technically a turbine. It is a nanogenerator made of two plastic strips in a tube that flutter or clap together when there is airflow. Like rubbing a balloon to your hair, the two plastics become electrically charged after being separated from contact, a phenomenon called the triboelectric effect. But instead of making your hair stand up like Einstein's, the electricity generated by the two plastic strips is captured and stored.

Miniature turbine

A breeze as gentle as 1.6 m/s (3.6 mph) was enough to power the triboelectric nanogenerator designed by Yang and his colleagues. The nanogenerator performs at its best when wind velocity is between 4 to 8 m/s (8.9 to 17.9 mph), a speed that allows the two plastic strips to flutter in sync. The device also has a high wind-to-energy conversion efficiency of 3.23%, a value that exceeds previously reported performances on wind energy scavenging. Currently, the research team's device can power up 100 LED lights and temperature sensors.

Read more at Tech Xplore

Image Credit: Xin Chen, Xiaojing Mu, and Ya Yang

-jk-