We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2017 was released on October 10th 2017. Its digital version will be available on October 10th 2017.

Topic: Electrical power engineering; RES; Fuel cells; Batteries and accumulators

Main Article
Electricity storage
Electrochemical impedance spectroscopy of batteries

SVĚTLO (Light) 5/2017 was released on September 18th 2017. Its digital version will be available on September 18th 2017.

Luminaires and luminous apparatuses
MAYBE STYLE introducing LED design luminaires of German producer Lightnet
TREVOS – new luminaires for industry and offices
How many types of LED panels produces MODUS?
Intelligent LED luminaire RENO PROFI

Interiors lighting
The light in indoor flat interior – questions and answers

This Battery Will Self-Destruct in 30 Minutes

08.08.2016 | Iowa State University | www.news.iastate.edu

Self-destructing electronic devices could keep military secrets out of enemy hands. Or they could save patients the pain of removing a medical device. Or, they could allow environmental sensors to wash away in the rain.

Making such devices possible is the goal of a relatively new field of study called “transient electronics.” These transient devices could perform a variety of functions – until exposure to light, heat or liquid triggers their destruction. The latest development from the Iowa State University lab is a self-destructing, lithium-ion battery capable of delivering 2.5 volts and dissolving or dissipating in 30 minutes when dropped in water. The battery can power a desktop calculator for about 15 minutes.

Self-destructing Battery

The battery itself is tiny – about 1 millimeter thick, 5 millimeters long and 6 millimeters wide. The battery components, structure and electrochemical reactions are all very close to commercially developed battery technology. But, when you drop it in water, the polymer casing swells, breaks apart the electrodes and dissolves away. The battery contains nanoparticles that don’t degrade, but they do disperse as the battery’s casing breaks the electrodes apart.

Read more at Iowa State University

Image Credit: Iowa State University

-jk-