We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 6/2018 was released on June 6th 2018. Its digital version will be available on June 26th 2018.

Topic: Rotating electrical machines, drives and power electronics; Electromobility

Main Article
Energy platform for vehicle-to-grid/home system
Smart Cities (part 2 – volume 2)

SVĚTLO (Light) 3/2018 was released on June 15th 2018. Its digital version will be available on July 17th 2018.

Accessories of lighting installations
Evening with Foxtrot on the Czech heaven

Public lighting
Timeless luminaire for public lighting – Streetlight 11
Control of public lighting

Thermoelectric silicon material reaches record-low thermal conductivity

05.10.2016 | Phys.org | www.phys.org

Researchers have theoretically demonstrated the lowest rate of heat transfer, or thermal conductivity, in any silicon-based material developed so far.

The new material, which is a polycrystalline silicon nanowire, breaks two limits: the Casimir limit and the amorphous limit. The Casimir limit is a theory that describes the thermal conductivity of nanostructures, and breaking it means that the thermal conductivity of the new material is lower than the value predicted by Casimir limit theory.

New thermoelectric material

The amorphous limit is regarded as the lowest thermal conductivity of a material, since amorphous structures strongly scatter heat carriers. However, due to its unique nanoscale design, the polycrystalline silicon nanowire has a thermal conductivity that is three times lower than that of amorphous silicon materials.

The researchers expect that the new material could be especially useful for thermoelectric applications. By converting heat energy into electricity, thermoelectric materials provide a way to capture some of the waste heat emitted by vehicle tailpipes, power plants, and manufacturing facilities, and then convert the heat into useful energy.

Read more at Phys.org

Image Credit: Adobe Stock

-jk-