We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2018 was released on December 12th 2018. Its digital version will be available on January 1st 2019.

Topic: Measurement engineering and measuring instruments; Testing industry and diagnostics

Main Article
Thermovision measurement in electrical power engineering
Smart Cities (part 5)

SVĚTLO (Light) 6/2018 was released on December 3rd 2018. Its digital version will be available on January 4th 2019.

Luminaires and light apparatuses
Modular floodlights Siteco
Decorative luminaire PRESBETON H-E-X from the integral series town equipment
LED luminaires ESALITE – revolution in sphere of industrial lighting

Daylight
About median illumination by daylight
Professional colloquium Daylight in practice

Texas Engineers Develop New Material for Better Lithium-Ion Batteries

01.11.2017 | The University of Texas at Austin | news.utexas.edu

The batteries we use every day may soon become cheaper, smaller and lighter. Researchers in the Cockrell School of Engineering at The University of Texas at Austin have discovered a family of anode materials that can double the charge capacity of lithium-ion battery anodes. This means that the batteries that we use in everything from cellphones to large-scale energy storage systems could be more efficient in the future.

The new family of anode materials, which the researchers dubbed the Interdigitated Eutectic Alloy (IdEA) anode, saves time and materials by producing an anode using only two simple steps instead of the multiple steps traditionally required to mass-produce lithium-ion battery anodes.

New material for li-ion batteries

The researchers created a foil material that is one-quarter of the thickness and half of the weight of the graphite and copper anodes used in virtually all lithium-ion batteries today. As a result, a smaller, lighter rechargeable battery could be made with the new anode in the future.

Read more at The University of Texas at Austin

Image Credit: Cockrell School of Engineering

-jk-