We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2019 was released on June 26th 2019. Its digital version will be available on July 26th 2019.

Topic: Cables, conductors and cable engineering, Tools, equipment and accessories for work with cables

Main Article
Asset management and diagnostic needs in Industry 4.0

SVĚTLO (Light) 4/2019 was released on July 29th 2019. Its digital version will be available on August 29th 2019.

Lighting installations
Foxtrot controls new location of barmans
Dynamic illumination of Guardian Angels’ chapel in Sušice

Accessories of lighting installations
Safety, austerity and comfort with KNX
Worldwide first LED switching source with KNX interface from MEAN WELL producer
KNX – the system with future
Schmachtl – connector installation gesis

Texas Engineers Develop New Material for Better Lithium-Ion Batteries

01.11.2017 | The University of Texas at Austin | news.utexas.edu

The batteries we use every day may soon become cheaper, smaller and lighter. Researchers in the Cockrell School of Engineering at The University of Texas at Austin have discovered a family of anode materials that can double the charge capacity of lithium-ion battery anodes. This means that the batteries that we use in everything from cellphones to large-scale energy storage systems could be more efficient in the future.

The new family of anode materials, which the researchers dubbed the Interdigitated Eutectic Alloy (IdEA) anode, saves time and materials by producing an anode using only two simple steps instead of the multiple steps traditionally required to mass-produce lithium-ion battery anodes.

New material for li-ion batteries

The researchers created a foil material that is one-quarter of the thickness and half of the weight of the graphite and copper anodes used in virtually all lithium-ion batteries today. As a result, a smaller, lighter rechargeable battery could be made with the new anode in the future.

Read more at The University of Texas at Austin

Image Credit: Cockrell School of Engineering

-jk-