We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2019 was released on November 6th 2019. Its digital version will be available on December 2nd 2019.

Topic: Electrical switchboards and switchboards technologies; substations

Main Article
The cause of mechanic vibration of synchronous mining engines by Palašer and its removal

SVĚTLO (Light) 5/2019 was released on September 16th 2019. Its digital version will be available immediately.

Professional organizations activities
International conference LIGHT (SVĚTLO) 2019 – 6th announcement
We participated in International commission on illumination CIE 2019 congress in Washington
Technical colloquium SLOVALUX 2019

Fairs and exhibitions
Inspire with boho styl and design of Far East at autumn fair FOR INTERIOR

Team invents method to shrink objects to the nanoscale

14.12.2018 | MIT | www.mit.edu

MIT researchers have invented a way to fabricate nanoscale 3-D objects of nearly any shape. They can also pattern the objects with a variety of useful materials, including metals, quantum dots, and DNA.

It’s a way of putting nearly any kind of material into a 3-D pattern with nanoscale precision,” says Edward Boyden, the Y. Eva Tan Professor in Neurotechnology and an associate professor of biological engineering and of brain and cognitive sciences at MIT. Using the new technique, the researchers can create any shape and structure they want by patterning a polymer scaffold with a laser.

Nanoscale objects

After attaching other useful materials to the scaffold, they shrink it, generating structures one thousandth the volume of the original. These tiny structures could have applications in many fields, from optics to medicine to robotics, the researchers say. The technique uses equipment that many biology and materials science labs already have, making it widely accessible for researchers who want to try it.

Read more at MIT

Image Credit: Daniel Oran

-jk-