We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2018 was released on March 14th 2018. Its digital version will be available on March 14th 2018.

Topic: Amper 2018 – 26th International trade fair for electrical engineering

Main Article
Influence of magnetic storms on transformers of the power system

SVĚTLO (Light) 2/2018 was released on March 16th 2018. Its digital version will be available immediately.

Fairs and exhibitions
Interior elite again after year in Letňany

Luminaires and luminous apparatuses
Emergency lighting
The future of industrial lighting has name INNOVA
GOLY luminaire – the practical high bay luminaire
McLED® – brand name of first rate quality LED lighting
VOLGA EU luminaire our choice for Europe

Storing energy from renewable sources

09.06.2017 | Phys.org | www.phys.org

One of the greatest challenges in generating energy from renewable sources is finding a way to store the continuously fluctuating energy being produced. Batteries, supercapacitors, and most other energy-storage technologies typically can't respond quickly enough to the second-by-second fluctuations inherent in wind and solar energy sources.

One device that does have a sufficiently fast response is electrostatic capacitors, but their drawback is their low energy density—they simply cannot store very much energy in a given volume. Addressing this problem, researchers in a new study have shown in simulations that antiferroelectric materials based on bismuth can potentially exhibit very high energy densities (150 J/cm3), making them a promising candidate material for electrostatic capacitors.

Energy storage

The results point to the possibility of a high-performance, environmentally friendly energy-storage device for renewable energy sources. The researchers, Bin Xu and Laurent Bellaiche at the University of Arkansas, and Jorge Íñiguez at the Luxembourg Institute of Science and Technology, have published a paper on their investigation of antiferroelectrics for energy storage in a recent issue of Nature Communications.

Read more at Phys.org

Image Credit: Nature Communications