We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 8-9/2019 was released on September 3rd 2019. Its digital version will be available immediately.

Topic: Electrical engineering in industry; 61th International Engineering Fair in Brno

Main Article
Residual current devices – overview and usage

SVĚTLO (Light) 5/2019 was released on September 16th 2019. Its digital version will be available immediately.

Professional organizations activities
International conference LIGHT (SVĚTLO) 2019 – 6th announcement
We participated in International commission on illumination CIE 2019 congress in Washington
Technical colloquium SLOVALUX 2019

Fairs and exhibitions
Inspire with boho styl and design of Far East at autumn fair FOR INTERIOR

Sound-proof metamaterial inspired by spider webs

12.09.2016 | Phys.org | www.phys.org

A team of researchers from Italy, France and the UK has designed an acoustic metamaterial (which is a material made of periodically repeating structures) influenced by the intricate spider web architecture of the golden silk orb-weaver, also called the Nephila spider.

By modeling different versions of the new spider-web-inspired acoustic metamaterial, the researchers demonstrated that the new design is more efficient at inhibiting low-frequency sound and is more easily tuned to different frequencies than other sound-controlling materials. Combined with the stiffening mechanical properties and the heterogeneity of spider silk, the tunable acoustic properties demonstrated here suggest that spider-web-inspired metamaterials could lead to a new class of applications for controlling vibrations. Possibilities include earthquake protection for suspended bridges and buildings, noise reduction, sub-wavelength imaging, and acoustic cloaking.

New acoustic metamaterial

The metamaterial is highly tunable because its geometry is defined by five parameters—which is more than traditional acoustic materials—and each of these parameters can be independently controlled to produce a vast number of designs that respond to different acoustic frequencies. The frequency range that is inhibited by these materials is called the band gap, and here the researchers showed that spider-web-inspired acoustic metamaterials can have wide band gaps, with large ranges of tunability.

Read more at Phys.org

Image Credit: M. Miniaci

-jk-