We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 1/202 was released on January 20th 2021. Its digital version will be available on February 10th 2021.

Topic: Electrotechnology; Materials for electrical engineering; Wiring material

Main article
Universal wireless charging of electric cars

SVĚTLO (Light) 6/2020 was released 12.14.2020. Its digital version will be available on 12.18.2020.

Fairs and exhibitions
Looking back at twenty second anniversary of Designblok
Competition of journal Světlo (Light) at FOR ARCH and FOR GARDEN fair 2020

Architectural and scenic lighting
Lighting design in a nutshell – Part 48
Light design for Vivaldianno show
Světlík (skylight) – workshop with light and about light for children

Sound-proof metamaterial inspired by spider webs

12. 9. 2016 | Phys.org | www.phys.org

A team of researchers from Italy, France and the UK has designed an acoustic metamaterial (which is a material made of periodically repeating structures) influenced by the intricate spider web architecture of the golden silk orb-weaver, also called the Nephila spider.

By modeling different versions of the new spider-web-inspired acoustic metamaterial, the researchers demonstrated that the new design is more efficient at inhibiting low-frequency sound and is more easily tuned to different frequencies than other sound-controlling materials. Combined with the stiffening mechanical properties and the heterogeneity of spider silk, the tunable acoustic properties demonstrated here suggest that spider-web-inspired metamaterials could lead to a new class of applications for controlling vibrations. Possibilities include earthquake protection for suspended bridges and buildings, noise reduction, sub-wavelength imaging, and acoustic cloaking.

New acoustic metamaterial

The metamaterial is highly tunable because its geometry is defined by five parameters—which is more than traditional acoustic materials—and each of these parameters can be independently controlled to produce a vast number of designs that respond to different acoustic frequencies. The frequency range that is inhibited by these materials is called the band gap, and here the researchers showed that spider-web-inspired acoustic metamaterials can have wide band gaps, with large ranges of tunability.

Read more at Phys.org

Image Credit: M. Miniaci

-jk-