We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 5/2019 was released on May 15th 2019. Its digital version will be available imediately.

Topic: Lightning and overvoltage protection; Fire and safety technologies

Main Article
Verification of material coefficient defined in the standard STN EN 62305-3
Smart Cities (final part 10)

SVĚTLO (Light) 2/2019 was released on March 15th 2019. Its digital version will be available immediately.

Architectural and scenic lighting
The architectural lighting of Bečov nad Teplou castle
Lighting design in a nutshell – Part 41
The analyse of light picture a little more theoretic

Day light
Biggest mistakes in day lighting design of buildings

Solar cell that captures nearly all energy of solar spectrum

12.07.2017 | George Washington University | www.gwu.edu

Scientists have designed and constructed a prototype for a new solar cell that integrates multiple cells stacked into a single device capable of capturing nearly all of the energy in the solar spectrum. The new design converts direct sunlight to electricity with 44.5 percent efficiency, giving it the potential to become the most efficient solar cell in the world. 

The approach is different from the solar panels one might commonly see on rooftops or in fields. The new device uses concentrator photovoltaic (CPV) panels that employ lenses to concentrate sunlight onto tiny, micro-scale solar cells. Because of their small size—less than one millimeter square—solar cells utilizing more sophisticated materials can be developed cost effectively.

Solar cell with the highest efficiency yet

The stacked cell acts almost like a sieve for sunlight, with the specialized materials in each layer absorbing the energy of a specific set of wavelengths. By the time the light is funneled through the stack, just under half of the available energy has been converted into electricity. By comparison, the most common solar cell today converts only a quarter of the available energy into electricity.

Read more at George Washington University

Image Credit: George Washington University

-jk-