We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 5/2018 was released on May 16th 2018. Its digital version will be available on June 6th 2018.

Topic: Lightning and overvoltage protection; EFS, EPS; ELO SYS 2018

Main Article
Energy router and its role in smart grids
Smart Cities (part 2 – volume 1)

SVĚTLO (Light) 2/2018 was released on March 16th 2018. Its digital version will be available immediately.

Fairs and exhibitions
Interior elite again after year in Letňany

Luminaires and luminous apparatuses
Emergency lighting
The future of industrial lighting has name INNOVA
GOLY luminaire – the practical high bay luminaire
McLED® – brand name of first rate quality LED lighting
VOLGA EU luminaire our choice for Europe

Shining more light on solar panels

23.10.2015 | Phys.org | www.phys.org

Solar panels are the beacon of renewable energy, yet they are not getting as much light as they could be. Joshua Pearce from Michigan Technological University and a team from Queen's University in Canada have found a way to get more sun to shine on the panels and crank up the output by 30 percent or more.

The research focused on the system rather than individual panels mostly because the current set up for ground-mounted solar panel arrays is "wasting space." The iconic flat-faced solar panels installed in large-scale utility solar farms are spaced apart to prevent shading. As the sun shines on a photovoltaic system, sending electricity into the grid, a fair amount of that potential energy is lost as the light hits the ground between rows of panels. The solution is simple: Fill the space with a reflector to bounce sunlight back onto the panels.

More effective solar panels

Because of the uncertainty with potential hot spots, using reflectors currently voids warranties for solar farm operators. For their solar panel work, Pearce's team created a bi-directional reflectance function model that could predict how much sunlight would bounce off a reflector and where it would shine on the array.

Read more at Phys.org

Image Credit: Wikipedia

-jk-