We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2019 was released on June 26th 2019. Its digital version will be available on July 26th 2019.

Topic: Cables, conductors and cable engineering, Tools, equipment and accessories for work with cables

Main Article
Asset management and diagnostic needs in Industry 4.0

SVĚTLO (Light) 4/2019 was released on July 29th 2019. Its digital version will be available on August 29th 2019.

Lighting installations
Foxtrot controls new location of barmans
Dynamic illumination of Guardian Angels’ chapel in Sušice

Accessories of lighting installations
Safety, austerity and comfort with KNX
Worldwide first LED switching source with KNX interface from MEAN WELL producer
KNX – the system with future
Schmachtl – connector installation gesis

Sheaths Become Mighty New Layer in Research Team’s Artificial Muscles

12.07.2019 | University of Texas in Dallas | www.utdallas.edu

Over the last 15 years, researchers at The University of Texas at Dallas and their international colleagues have invented several types of strong, powerful artificial muscles using materials ranging from high-tech carbon nanotubes (CNTs) to ordinary fishing line.

In a new study published in the journal Science, the researchers describe their latest advance, called sheath-run artificial muscles, or SRAMs. The research group’s previous muscles were made by twisting CNT yarn, polymer fishing line or nylon sewing thread. By twisting these fibers to the point that they coil, the researchers produced muscles that dramatically contract, or actuate, along their length when heated and return to their initial length when cooled.

Artificial muscles

To form the new muscles, the research team applied a polymer coating to twisted CNT yarns, as well as to inexpensive nylon, silk and bamboo yarns, creating a sheath around the yarn core. When operated electrochemically, a muscle consisting of a CNT sheath and a nylon core generated an average contractile power that is 40 times that of human muscle and nine times that of the highest power alternative electrochemical muscle.

Read more at University of Texas in Dallas

Image Credit: University of Texas in Dallas

-jk-