We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2018 was released on September 26th 2018. Its digital version will be available immediately.

Topic: Electrical power engineering; RES; Batteries and accumulators; E-mobility

Main Article
Smart Cities (part 1 – volume 1)

SVĚTLO (Light) 5/2018 was released on September 17th 2018. Its digital version will be available immediately.

Interiors lighting
Luminaire selection by the concept of interior
The unique book about interiors nowadays on market
Invitation on colloquium Interiéry 2018 – exceptional action for the seventh time

Newsreel
Profesor Jiří Habel passed away – memories remain

Semiconductor-free Microelectronics Are Now Possible, Thanks to Metamaterials

09.11.2016 | University of California San Diego | ucsdnews.ucsd.edu

Engineers at the University of California San Diego have fabricated the first semiconductor-free, optically-controlled microelectronic device. Using metamaterials, engineers were able to build a microscale device that shows a 1,000 percent increase in conductivity when activated by low voltage and a low power laser.

The discovery paves the way for microelectronic devices that are faster and capable of handling more power, and could also lead to more efficient solar panels. The capabilities of existing microelectronic devices, such as transistors, are ultimately limited by the properties of their constituent materials, such as their semiconductors.

Semiconductor-free Microelectronics Are Now Possible, Thanks to Metamaterials

To address this challenge, research team fabricated a microscale device that can release electrons from a material. The device consists of an engineered surface, called a metasurface, on top of a silicon wafer, with a layer of silicon dioxide in between. The metasurface consists of an array of gold mushroom-like nanostructures on an array of parallel gold strips.

The team is also exploring other applications for this technology besides electronics, such as photochemistry, photocatalysis, enabling new kinds of photovoltaic devices or environmental applications.

Read more at University of California San Diego

Image Credit: University of California San Diego

-jk-