We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2017 was released on November 6th 2017. Its digital version will be available on November 27th 2017.

Topic: Electrical distribution switchboards and switchboard technology; Rotating electrical machines

Main Article
Analysis of the CFD settings for simulating the temperature field of sinusoidal filter
On-line optimisation of current commutation angles in phases of BLDC motor

SVĚTLO (Light) 5/2017 was released on September 18th 2017. Its digital version will be available on September 18th 2017.

Luminaires and luminous apparatuses
MAYBE STYLE introducing LED design luminaires of German producer Lightnet
TREVOS – new luminaires for industry and offices
How many types of LED panels produces MODUS?
Intelligent LED luminaire RENO PROFI

Interiors lighting
The light in indoor flat interior – questions and answers

Semiconductor-free Microelectronics Are Now Possible, Thanks to Metamaterials

09.11.2016 | University of California San Diego | ucsdnews.ucsd.edu

Engineers at the University of California San Diego have fabricated the first semiconductor-free, optically-controlled microelectronic device. Using metamaterials, engineers were able to build a microscale device that shows a 1,000 percent increase in conductivity when activated by low voltage and a low power laser.

The discovery paves the way for microelectronic devices that are faster and capable of handling more power, and could also lead to more efficient solar panels. The capabilities of existing microelectronic devices, such as transistors, are ultimately limited by the properties of their constituent materials, such as their semiconductors.

Semiconductor-free Microelectronics Are Now Possible, Thanks to Metamaterials

To address this challenge, research team fabricated a microscale device that can release electrons from a material. The device consists of an engineered surface, called a metasurface, on top of a silicon wafer, with a layer of silicon dioxide in between. The metasurface consists of an array of gold mushroom-like nanostructures on an array of parallel gold strips.

The team is also exploring other applications for this technology besides electronics, such as photochemistry, photocatalysis, enabling new kinds of photovoltaic devices or environmental applications.

Read more at University of California San Diego

Image Credit: University of California San Diego

-jk-