We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2016 was released on September 27th 2016. Its digital version will be available on October 27th 2016.


Topic: 22nd International trade fair ELO SYS 2016; Electrical Power Engineering; RES; Emergency Power Units


Main Article

Power system management under utilization of Smart Grid system

Printed edition of SVĚTLO (Light) 5/2016 was released on September 19th 2016. Its digital version will be available immediately.


Standards, regulations and recommendations

Regulation No 10/2016 (Prague building code) from the view of building lighting technology


Lighting installations

PROLICHT CZECH – supplier of lighting for new SAP offices

Hold up the light to see in work your work

Modern and saving LED lifting of swimming pool hall

Self-healing, flexible electronic material restores functions after many breaks

16.08.2016 | PennState | news.psu.edu

Electronic materials have been a major stumbling block for the advance of flexible electronics because existing materials do not function well after breaking and healing. A new electronic material created by an international team, however, can heal all its functions automatically even after breaking multiple times. This material could improve the durability of wearable electronics.

Self-healable materials are those that, after withstanding physical deformation such as being cut in half, naturally repair themselves with little to no external influence. In the past, researchers have been able to create self-healable materials that can restore one function after breaking, but restoring a suite of functions is critical for creating effective wearable electronics.

Self-healing material

The material that the team of scientists created restores all properties needed for use as a dielectric in wearable electronics -- mechanical strength, breakdown strength to protect against surges, electrical resistivity, thermal conductivity and dielectric, or insulating, properties.

The material is able to self-heal because boron nitride nanosheets connect to one another with hydrogen bonding groups functionalized onto their surface. When two pieces are placed in close proximity, the electrostatic attraction naturally occurring between both bonding elements draws them close together. When the hydrogen bond is restored, the two pieces are “healed.”

Read more at PennState

Image Credit: PennState/Youtube