We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2018 was released on June 27th 2018. Its digital version will be available on July 27th 2018.

Topic: Cables, conductors and cable engineering; Tools, equipment and accessories for work with cables

Main Article
Parametrization of circuit models of Li-accumulators for electromobility
Smart Cities (part 3 – volume 1)

SVĚTLO (Light) 4/2018 was released on July 30th 2018. Its digital version will be available on August 31th 2018.

Refreshing our memory
Eccentric luminaires of René Roubíček from the years1965 till 1977
Bases of photometry – 1st part
Great personage of Czech science of times after Battle at Bílá hora: doctor, naturalist, philosopher and physicist Jan Marek Marci from Kronland

Optical radiation effects and use
The light and circadian rhythms

Self-healing, flexible electronic material restores functions after many breaks

16.08.2016 | PennState | news.psu.edu

Electronic materials have been a major stumbling block for the advance of flexible electronics because existing materials do not function well after breaking and healing. A new electronic material created by an international team, however, can heal all its functions automatically even after breaking multiple times. This material could improve the durability of wearable electronics.

Self-healable materials are those that, after withstanding physical deformation such as being cut in half, naturally repair themselves with little to no external influence. In the past, researchers have been able to create self-healable materials that can restore one function after breaking, but restoring a suite of functions is critical for creating effective wearable electronics.

Self-healing material

The material that the team of scientists created restores all properties needed for use as a dielectric in wearable electronics -- mechanical strength, breakdown strength to protect against surges, electrical resistivity, thermal conductivity and dielectric, or insulating, properties.

The material is able to self-heal because boron nitride nanosheets connect to one another with hydrogen bonding groups functionalized onto their surface. When two pieces are placed in close proximity, the electrostatic attraction naturally occurring between both bonding elements draws them close together. When the hydrogen bond is restored, the two pieces are “healed.”

Read more at PennState

Image Credit: PennState/Youtube

-jk-