We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2019 was released on November 2nd 2019. Its digital version will be available immediately.

Topic: Topic: Electroenergetics, Devices for transmission and distribution of electricity

Main Article
Problematics of measurement on inverter welding sources

SVĚTLO (Light) 5/2019 was released on September 16th 2019. Its digital version will be available immediately.

Professional organizations activities
International conference LIGHT (SVĚTLO) 2019 – 6th announcement
We participated in International commission on illumination CIE 2019 congress in Washington
Technical colloquium SLOVALUX 2019

Fairs and exhibitions
Inspire with boho styl and design of Far East at autumn fair FOR INTERIOR

See-through circuitry

22.08.2016 | KAUST | discovery.kaust.edu.sa

High-performance electronic circuits made entirely from transparent materials could have countless applications, from head-up displays on car windscreens to transparent TV sets and smart windows in homes and offices. Researchers at KAUST have found a way to make transparent transistors and other essential components of electronic circuitry using inexpensive and readily available materials and a simple fabrication technique.

Indium tin oxide (ITO) is the current material of choice for electronics because it combines optical transparency with electrical conductivity. Its use ranges from touch-sensitive smartphone screens to light-harvesting solar panels. Indium is in short supply, however, and as demand increases for ITO-containing devices, so does the price of indium.

See-through electronics

One promising low-cost ITO alternative is a transparent material known as aluminum-doped zinc oxide (AZO).

The team of scientists used a high-precision technology called atomic layer deposition, a process in which the circuitry is built up a single layer of atoms at a time. Volatile vapors of aluminum and zinc in the form of trimethyl aluminum and diethyl zinc were alternately introduced onto the transparent substrate, where they adhere to the surface in a single layer before reacting in situ to form AZO.

Read more at KAUST

Image Credit: KAUST

-jk-