We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2019 was released on March 11th 2019. Its digital version will be available on March 11th 2019.

Topic: Amper 2019 – 271 International trade fair for electrical engineering

Main Article
Smart Cities (part 8)

SVĚTLO (Light) 2/2019 was released on March 15th 2019. Its digital version will be available immediately.

Architectural and scenic lighting
The architectural lighting of Bečov nad Teplou castle
Lighting design in a nutshell – Part 41
The analyse of light picture a little more theoretic

Day light
Biggest mistakes in day lighting design of buildings

Rutgers Physicists Create New Class of 2D Artificial Materials

11.06.2018 | Rutgers University | www.rutgers.edu

For decades, scientists thought it would be impossible to prove the theory by Philip W. Anderson, who shared the 1977 Nobel Prize in physics that says that ferroelectric metals could conduct electricity despite not existing in nature. It was like trying to blend fire and water, but a Rutgers-led international team of scientists has verified the theory and their findings are published online in Nature Communications.

It’s exciting,” said Jak Chakhalian, a team leader of the study and Professor Claud Lovelace Endowed Chair in Experimental Physics at Rutgers University–New Brunswick. “We created a new class of two-dimensional artificial materials with ferroelectric-like properties at room temperature that don’t exist in nature yet can conduct electricity. It’s an important link between a theory and an experiment.”

New 2D material

A cornerstone of technology, ferroelectric materials are used in electronics such as cell phone and other antennas, computer storage, medical equipment, high precision motors, ultra-sensitive sensors and sonar equipment. None of their materials conducts electricity and the Rutgers-led findings potentially could spawn a new generation of devices and applications, Chakhalian said.

Read more at Rutgers University

Image Credit: Zhen Wang and Yimei Zhu

-jk-