We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 6/2018 was released on June 6th 2018. Its digital version will be available on June 26th 2018.

Topic: Rotating electrical machines, drives and power electronics; Electromobility

Main Article
Energy platform for vehicle-to-grid/home system
Smart Cities (part 2 – volume 2)

SVĚTLO (Light) 3/2018 was released on June 15th 2018. Its digital version will be available on July 17th 2018.

Accessories of lighting installations
Evening with Foxtrot on the Czech heaven

Public lighting
Timeless luminaire for public lighting – Streetlight 11
Control of public lighting

Rutgers Physicists Create New Class of 2D Artificial Materials

11.06.2018 | Rutgers University | www.rutgers.edu

For decades, scientists thought it would be impossible to prove the theory by Philip W. Anderson, who shared the 1977 Nobel Prize in physics that says that ferroelectric metals could conduct electricity despite not existing in nature. It was like trying to blend fire and water, but a Rutgers-led international team of scientists has verified the theory and their findings are published online in Nature Communications.

It’s exciting,” said Jak Chakhalian, a team leader of the study and Professor Claud Lovelace Endowed Chair in Experimental Physics at Rutgers University–New Brunswick. “We created a new class of two-dimensional artificial materials with ferroelectric-like properties at room temperature that don’t exist in nature yet can conduct electricity. It’s an important link between a theory and an experiment.”

New 2D material

A cornerstone of technology, ferroelectric materials are used in electronics such as cell phone and other antennas, computer storage, medical equipment, high precision motors, ultra-sensitive sensors and sonar equipment. None of their materials conducts electricity and the Rutgers-led findings potentially could spawn a new generation of devices and applications, Chakhalian said.

Read more at Rutgers University

Image Credit: Zhen Wang and Yimei Zhu

-jk-