We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2018 was released on September 26th 2018. Its digital version will be available immediately.

Topic: Electrical power engineering; RES; Batteries and accumulators; E-mobility

Main Article
Smart Cities (part 1 – volume 1)

SVĚTLO (Light) 5/2018 was released on September 17th 2018. Its digital version will be available immediately.

Interiors lighting
Luminaire selection by the concept of interior
The unique book about interiors nowadays on market
Invitation on colloquium Interiéry 2018 – exceptional action for the seventh time

Newsreel
Profesor Jiří Habel passed away – memories remain

Researchers using 3D printed bacteria to make graphene-like material

27.03.2017 | 3ders | www.3ders.org

Researchers at the Delft University of Technology in the Netherlands are using 3D printed bacteria to create bespoke, graphene-like materials.

The secret to the new technique is bacteria—3D printed bacteria, to be precise. The researchers have discovered that bacteria can be deposited in precise lines using a 3D printer to turn graphene oxide—a compound of carbon, oxygen, and hydrogen—into a material that closely resembles graphene.

3D printing with bacteria

The trick is getting these bacteria to „reduce” the graphene oxide, by pulling oxygen atoms off the material as they metabolize. This process of reduction can also be achieved with heat or chemicals, but the researchers say that bacteria is cheaper and more eco-friendly.

The researchers hacked an ordinary desktop 3D printer to make it print bacteria onto a surface in precise lines just 1 millimeter wide. Printing bacteria is no mean feat, of course, and the researchers had to make a special concoction of E. coli mixed with a gel made from algae. They 3D printed this cocktail onto a dish containing calcium ions, and these calcium ions make the gel solidify upon contact. This keeps the bacteria exactly where they need to be.

Read more at 3ders

Image Credit: Delft University of Technology

-jk-