We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2017 was released on March 15th 2017. Its digital version will be available immediately.

Topic: Amper 2017 – 25th International trade fair for electrical engineering

Main Article

Problems of electromobility

SVĚTLO (Light) 2/2017 was released on March 17th 2017. Its digital version will be available immediately.

Fair and exhibitions
Inspired lighting from foreign fairs 

Accessories of lighting installations
On lighting operation is possible to save with minimum investments
Maxos fusion – new Philips Quit assembling system
Inteligent solution Dalisys® for control lighting

Researchers outline physics of metal 3-D printing

15.01.2016 | Phys.org | www.phys.org

While the most common method of metal 3D printing is growing exponentially, moving forward from producing prototypes to manufacturing critical parts will be possible only by reaching a fundamental understanding of the complex physics behind the process, according to a new paper authored by Lawrence Livermore National Laboratory (LLNL) researchers.

The powder bed fusion process, also known as selective laser melting (SLM), requires thin layers of a metal powder to be spread across a build area, where they are fused by a laser or electron beam based on a 3D computer-aided design (CAD) model. The process is repeated until a part is produced, layer-by-layer from the bottom up.

Researchers outlining a 3D print of metals

Even though the method has quickly progressed into a production technology, 3D printing of metal parts (also known as metal additive manufacturing) for industries such as aerospace and health care is hampered, according to LLNL's Wayne King, by a lack of confidence in the finished parts. This hurdle, he said, can be overcome by a combination of physics-based modeling and high-performance computing to determine the optimal parameters for building each part.

Read more at Phys.org

Image Credit: Lawrence Livermore National Laboratory

-jk-