We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2018 was released on June 27th 2018. Its digital version will be available on July 27th 2018.

Topic: Cables, conductors and cable engineering; Tools, equipment and accessories for work with cables

Main Article
Parametrization of circuit models of Li-accumulators for electromobility
Smart Cities (part 3 – volume 1)

SVĚTLO (Light) 3/2018 was released on June 15th 2018. Its digital version will be available on July 17th 2018.

Accessories of lighting installations
Evening with Foxtrot on the Czech heaven

Public lighting
Timeless luminaire for public lighting – Streetlight 11
Control of public lighting

Researchers invent process to produce renewable car tires from trees, grass

13.02.2017 | University of Minnesota | twin-cities.umn.edu

A team of researchers, led by the University of Minnesota, has invented a new technology to produce automobile tires from trees and grasses in a process that could shift the tire production industry toward using renewable resources found right in our backyards.

Conventional car tires are viewed as environmentally unfriendly because they are predominately made from fossil fuels. The car tires produced from biomass that includes trees and grasses would be identical to existing car tires with the same chemical makeup, color, shape, and performance.

Renewable tires

Our team created a new chemical process to make isoprene, the key molecule in car tires, from natural products like trees, grasses, or corn,” said Paul Dauenhauer, a University of Minnesota associate professor of chemical engineering and materials science and lead researcher of the study. “This research could have a major impact on the multi-billion dollar automobile tires industry.”

The process technology breakthrough came in the third step to dehydrate methyl-THF to isoprene. Using a catalyst recently discovered at the University of Minnesota called P-SPP (Phosphorous Self-Pillared Pentasil), the team was able to demonstrate a catalytic efficiency as high as 90 percent with most of the catalytic product being isoprene. By combining all three steps into a process, isoprene can be renewably sourced from biomass.

Read more at University of Minnesota

Image Credit: University of Minnesota

-jk-