We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2016 was released on November 7th 2016. Its digital version will be available on December 1st 2016.

 

Topic: Switchboards and switchboard engineering; Rotating electrical machines and power electronics; Maintenance of EE

 

Main Article

Lithium traction batteries for electric mobility (part 1)

Printed edition of SVĚTLO (Light) 5/2016 was released on September 19th 2016. Its digital version will be available immediately.

 

Standards, regulations and recommendations

Regulation No 10/2016 (Prague building code) from the view of building lighting technology

 

Lighting installations

PROLICHT CZECH – supplier of lighting for new SAP offices

Hold up the light to see in work your work

Modern and saving LED lifting of swimming pool hall

Researchers discover highly conductive materials for more efficient electronics

01.08.2016 | University of Minnesota | www.cems.umn.edu

Engineers from the University of Utah and the University of Minnesota have discovered that interfacing two particular oxide-based materials makes them highly conductive, a boon for future electronics that could result in much more power-efficient laptops, electric cars and home appliances that also don't need cumbersome power supplies.

The research team revealed that when two oxide compounds -- strontium titanate (STO) and neodymium titanate (NTO) -- interact with each other, the bonds between the atoms are arranged in a way that produces many free electrons, the particles that can carry electrical current. STO and NTO are by themselves known as insulators -- materials like glass -- that are not conductive at all. But when they interface, the amount of electrons produced is a hundred times larger than what is possible in semiconductors.

New highly conductive material discovered

“When I look at the future, I see that we can perhaps improve conductivity by an order of magnitude through optimizing the materials growth,” says professor Bharat Jalan, one of the researchers. “Additionally complex oxides can also be optically transparent, magnetic and superconductors. By creating artificial structures with complex oxides, we are bringing the possibility of high power, low energy oxide electronics closer to reality.”

Read more at University of Minnesota

Image Credit: University of Minnesota

-jk-