We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2017 was released on February 17th 2017. Its digital version will be available on March 10th 2017.

 

Topic: Electrical appliances – switching, protective and signalling; Devices for smart grids

 

Main Article

Atypical concept of DC power supply source for high current consumption

SVĚTLO (Light) 1/2017 was released on February 7th 2017. Its digital version will be available on March 7th 2017.

Fair and exhibitions
Invitation on LIGHT IN ARCHITECTURE exhibition 

Architectural and scenic lighting
Lighting design in a nutshell
Spiegeltent illumination and its specificity

Researchers discover highly conductive materials for more efficient electronics

01.08.2016 | University of Minnesota | www.cems.umn.edu

Engineers from the University of Utah and the University of Minnesota have discovered that interfacing two particular oxide-based materials makes them highly conductive, a boon for future electronics that could result in much more power-efficient laptops, electric cars and home appliances that also don't need cumbersome power supplies.

The research team revealed that when two oxide compounds -- strontium titanate (STO) and neodymium titanate (NTO) -- interact with each other, the bonds between the atoms are arranged in a way that produces many free electrons, the particles that can carry electrical current. STO and NTO are by themselves known as insulators -- materials like glass -- that are not conductive at all. But when they interface, the amount of electrons produced is a hundred times larger than what is possible in semiconductors.

New highly conductive material discovered

“When I look at the future, I see that we can perhaps improve conductivity by an order of magnitude through optimizing the materials growth,” says professor Bharat Jalan, one of the researchers. “Additionally complex oxides can also be optically transparent, magnetic and superconductors. By creating artificial structures with complex oxides, we are bringing the possibility of high power, low energy oxide electronics closer to reality.”

Read more at University of Minnesota

Image Credit: University of Minnesota

-jk-