We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2018 was released on June 27th 2018. Its digital version will be available on July 27th 2018.

Topic: Cables, conductors and cable engineering; Tools, equipment and accessories for work with cables

Main Article
Parametrization of circuit models of Li-accumulators for electromobility
Smart Cities (part 3 – volume 1)

SVĚTLO (Light) 4/2018 was released on July 30th 2018. Its digital version will be available on August 31th 2018.

Refreshing our memory
Eccentric luminaires of René Roubíček from the years1965 till 1977
Bases of photometry – 1st part
Great personage of Czech science of times after Battle at Bílá hora: doctor, naturalist, philosopher and physicist Jan Marek Marci from Kronland

Optical radiation effects and use
The light and circadian rhythms

Researchers develop novel wound healing technology

30.11.2016 | Washington State University | news.wsu.edu

A Washington State University research team has successfully used a mild electric current to take on and beat drug-resistant bacteria Pseudomonas aeruginosa PAO1, a technology that may eventually be used to treat chronic wound infections.

These bacteria are responsible for chronic and serious infections in people with lung diseases, such as cystic fibrosis, and in chronic wounds. They also often cause pneumonia for people who are on ventilators and infections in burn victims.

New technology for wound treatment

In the new study, the researchers used an “e-scaffold,” a sort of electronic band-aid made out of conductive carbon fabric, along with an antibiotic to specifically tackle these persister cells.

The e-scaffold creates an electrical current that produces a low and constant concentration of hydrogen peroxide, an effective disinfectant, at the e-scaffold surface. The hydrogen peroxide disrupts the biofilm matrix and damages the bacteria cell walls and DNA, which allows better antibiotic penetration and efficacy against the bacteria.

Read more at Washington State University

Image Credit: Washington State University

-jk-