We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2018 was released on March 14th 2018. Its digital version will be available on March 14th 2018.

Topic: Amper 2018 – 26th International trade fair for electrical engineering

Main Article
Influence of magnetic storms on transformers of the power system

SVĚTLO (Light) 2/2018 was released on March 16th 2018. Its digital version will be available immediately.

Fairs and exhibitions
Interior elite again after year in Letňany

Luminaires and luminous apparatuses
Emergency lighting
The future of industrial lighting has name INNOVA
GOLY luminaire – the practical high bay luminaire
McLED® – brand name of first rate quality LED lighting
VOLGA EU luminaire our choice for Europe

Researchers Develop Fastest and Most Flexible Silicon Phototransistor Ever

06.11.2015 | UW-Madison | news.wisc.edu

Inspired by mammals' eyes, University of Wisconsin-Madison electrical engineers have created the fastest, most responsive flexible silicon phototransistor ever made.

The innovative phototransistor could improve the performance of myriad products - ranging from digital cameras, night-vision goggles and smoke detectors to surveillance systems and satellites - that rely on electronic light sensors. Integrated into a digital camera lens, for example, it could reduce bulkiness and boost both the acquisition speed and quality of video or still photos.

The most flexible phototransistor

Developed by UW-Madison collaborators Zhenqiang Ma, professor of electrical and computer engineering, and research scientist Jung-Hun Seo, the high-performance phototransistor far and away exceeds all previous flexible phototransistor parameters, including sensitivity and response time.

One important aspect of the success of the new phototransistors is the researchers' innovative “flip-transfer” fabrication method, in which their final step is to invert the finished phototransistor onto a plastic substrate. At that point, a reflective metal layer is on the bottom. “In this structure - unlike other photodetectors - light absorption in an ultrathin silicon layer can be much more efficient because light is not blocked by any metal layers or other materials,” Ma says.

Read more at UW-Madison

Image Credit: UW-Madison