We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2019 was released on June 26th 2019. Its digital version will be available on July 26th 2019.

Topic: Cables, conductors and cable engineering, Tools, equipment and accessories for work with cables

Main Article
Asset management and diagnostic needs in Industry 4.0

SVĚTLO (Light) 3/2019 was released on June 11th 2019. Its digital version will be available on July 15th 2019.

Fairs and exhibitions
Euroluce 2019 by designers eyes
Exhibition Light in architecture 2019
Amper 2019 in capture of sophisticated technologies

Refreshing our memory
Lighting glass from Kamenný pahorek

Researchers 3D Printed Kidney to Determine Optimal Radiation Dosage for Patients

07.12.2016 | 3D Print | 3dprint.com

It can be difficult to determine the best dosage of radiation for each particular patient, but 3D printing can help. Researchers at the University of Würzburg have been using 3D printing to prototype kidney models, or kidney phantoms, of different shapes and sizes in order to assess how much radiation is needed for optimal imaging.

The goal is to be able to develop patient-specific treatment, and kidneys were chosen for prototyping as they’re one of the highest-risk organs in radiation therapy and imaging.

Researchers used 3D printed kidneys

A group of researchers in the UK performed a similar study earlier this year, using 3D printed organ models to determine the correct dose calibration for different organs using SPECT (Single Photon Emission Computed Tomography) imaging. In the new, kidney-specific study, University of Würzburg researchers 3D printed four kidneys of different sizes, representing a newborn, a one-year-old, a five-year-old and an adult.

The 3D printed phantoms were then used to test the accuracy of quantitative imaging for internal renal dosimetry. The study determined the proper nuclide-dependent SPECT/CT calibration factors for technetium-99m (Tc-99m), lutetium-177 (Lu-177), and iodine-131 (I-131).

Read more at 3D Print

Image Credit: University of Würzburg

-jk-