We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2019 was released on June 26th 2019. Its digital version will be available on July 26th 2019.

Topic: Cables, conductors and cable engineering, Tools, equipment and accessories for work with cables

Main Article
Asset management and diagnostic needs in Industry 4.0

SVĚTLO (Light) 3/2019 was released on June 11th 2019. Its digital version will be available on July 15th 2019.

Fairs and exhibitions
Euroluce 2019 by designers eyes
Exhibition Light in architecture 2019
Amper 2019 in capture of sophisticated technologies

Refreshing our memory
Lighting glass from Kamenný pahorek

Recycling carbon fiber composites

03.05.2017 | Washington State University | news.wsu.edu

A WSU research team for the first time has developed a promising way to recycle the popular carbon fiber plastics that are used in everything from modern airplanes and sporting goods to the wind energy industry.

Carbon fiber reinforced plastics are very difficult to break down or recycle, and disposing of them has become of increasing concern. While thermoplastics, the type of plastic used in milk bottles, can be melted and easily re-used, most composites used in planes are thermosets. These types of plastics are cured and can’t easily be undone and returned to their original materials.

Carbon fiber plastics recycle

In their project, Jinwen Zhang, a professor in the School of Mechanical and Materials Engineering, and his team developed a new chemical recycling method that used mild acids as catalysts in liquid ethanol at a relatively low temperature to break down the thermosets. In particular, it was the combination of chemicals that proved effective, said Zhang, who has a chemistry background.

To break down cured materials effectively, the researchers raised the temperature of the material so that the catalyst-containing liquid can penetrate into the composite and break down the complex structure. The researchers were able to preserve the carbon fibers as well as the resin material in a useful form that could be easily re-used.

Read more at Washington State University

Image Credit: Washington State University

-jk-