We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2016 was released on November 7th 2016. Its digital version will be available on December 1st 2016.

 

Topic: Switchboards and switchboard engineering; Rotating electrical machines and power electronics; Maintenance of EE

 

Main Article

Lithium traction batteries for electric mobility (part 1)

SVĚTLO (Light) 6/2016 was released on December 5th 2016. Its digital version will be available on January 5th 2017.

Interiors lighting
Colloquium Interiors 2016 – the fifth anniversary
Cooperation of indoor interior and lighting 

Standards, regulations and recommendations
New standards for road lighting

Record-speed data transmission could make big data more accessible

23.03.2016 | University of Illinois | news.illinois.edu

University of Illinois engineers developed fiber-optic technology that can transmit data at a blazing-fast 57 gigabits per second, without errors.

The research team was led by electrical and computer engineering professor Milton Feng. Feng’s group has been pushing VCSEL technology to higher speeds in recent years, and in 2014 was the first group in the U.S. to achieve error-free data transmission at 40 gigabits per second (denoted as Gbps). Now, in a series of conference papers, they report 57 Gbps error-free data transmission at room temperature, as well as 50 Gbps speeds at higher temperatures up to 85 degrees Celsius (185 degrees Fahrenheit).

Record-breakind data transfer

Achieving high speeds at high temperatures is very difficult, Feng said, due to the nature of the materials used, which prefer lower temperatures. However, computing components grow warm over extended operation, as anyone who has worked on an increasingly heated laptop can attest.

“This type of technology is going to be used not only for data centers, but also for airborne, lightweight communications, like in airplanes, because the fiber-optic wires are much lighter than copper wire,” Feng said.

Read more at University of Illinois

Image Credit: University of Illinois

-jk-