We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 1/2018 was released on January 16th 2018. Its digital version will be available on February 12th 2018.

Topic: Electrotechnology; Materials for electrical engineering; Wiring material

Main Article
A new electrical insulating fluid and its possible deployment in practice

SVĚTLO (Light) 6/2017 was released on December 11th 2017. Its digital version will be available on january 11th 2018.

Lighting installations
The lighting of university building Centrale Supélec in Saclay in France
The light for our future

Daylight
Application and judgment light guides Solatube®

Rechargeable batteries that last longer and re-charge more rapidly

11.07.2016 | Paul Scherrer Institute | www.psi.ch

Materials researchers at the Swiss Paul Scherrer Institute PSI in Villigen and the ETH Zurich have developed a very simple and cost-effective procedure for significantly enhancing the performance of conventional Li-ion rechargeable batteries.

Instead of inventing a new battery technology, researchers took a different approach: They checked existing components with a view to fully exploiting their potential. Simply by optimizing the graphite anode – or negative electrode - on a conventional Li-ion battery, researchers were able to boost battery performance. Under laboratory conditions, they were able to enhance storage capacity by a factor of up to 3. Owing to their complex construction, commercial batteries will not be able to fully replicate these results. But performance will definitely be enhanced, perhaps by as much as 30 – 50 percent: further experiments should yield more accurate prognoses.

New type of rechargeable battery

The method involves coating the graphite flakes with nanoparticles of iron oxide sensitive to a magnetic field and suspending them in ethanol. The suspended and already magnetized flakes are subsequently subjected to a magnetic field of 100 millitesla—about the strength of a fridge magnet.. As a result, they are perfectly ordered, reducing the diffusion distances covered by the lithium ions to a minimum.

Read more at Paul Scherrer Institute

Image Credit: Paul Scherrer Institute

-jk-