We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2016 was released on November 7th 2016. Its digital version will be available on December 1st 2016.

 

Topic: Switchboards and switchboard engineering; Rotating electrical machines and power electronics; Maintenance of EE

 

Main Article

Lithium traction batteries for electric mobility (part 1)

SVĚTLO (Light) 6/2016 was released on December 5th 2016. Its digital version will be available on January 5th 2017.

Interiors lighting
Colloquium Interiors 2016 – the fifth anniversary
Cooperation of indoor interior and lighting 

Standards, regulations and recommendations
New standards for road lighting

Prosthetic Hands with Sense of Touch

29.04.2016 | DARPA | www.darpa.mil

Despite recent advances in technology for upper-limb prostheses, artificial arms and hands are still unable to provide users with sensory feedback, such as the “feel” of things being touched or awareness of limb position and movement.

Without this feedback, even the most advanced prosthetic limbs remain numb to users, a factor that impairs the limbs’ effectiveness and their wearers’ willingness to use them. In a step toward overcoming these challenges, DARPA has awarded prime contracts for Phase 1 of its Hand Proprioception and Touch Interfaces (HAPTIX) program.

Protetic hand capable of feeling things

The ultimate goal for HAPTIX is to create a device that is safe, effective and reliable enough for use in everyday activities,” said Doug Weber, DARPA program manager. DARPA is evaluating several distinct technical approaches in Phase 1. Those that prove successful would continue into Phase 2, which would integrate selected technology components into a complete HAPTIX test system. The agency plans to initiate take-home trials of a complete, FDA-approved HAPTIX prosthesis system within four years.

Where appropriate, HAPTIX teams intend to leverage commercially available technologies such as intramuscular electrodes and lead technologies developed initially for cardiac pacemakers and now used in several modern implantable medical devices. The program also plans to test advanced microelectrode array and nerve cuff electrode technologies that have been developed over the past two decades with support from the National Institutes of Health, the Department of Veterans Affairs and DARPA.

Read more at DARPA

Image Credit: DARPA

-jk-