We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2018 was released on December 12th 2018. Its digital version will be available on January 1st 2019.

Topic: Measurement engineering and measuring instruments; Testing industry and diagnostics

Main Article
Thermovision measurement in electrical power engineering
Smart Cities (part 5)

SVĚTLO (Light) 6/2018 was released on December 3rd 2018. Its digital version will be available on January 4th 2019.

Luminaires and light apparatuses
Modular floodlights Siteco
Decorative luminaire PRESBETON H-E-X from the integral series town equipment
LED luminaires ESALITE – revolution in sphere of industrial lighting

Daylight
About median illumination by daylight
Professional colloquium Daylight in practice

Probing the limits of wind power generation

04.09.2015 | Phys.org | www.phys.org

Wind turbine farms now account for an estimated 3.3 percent of electricity generation in the United States, and 2.9 percent of electricity generated globally.

The wind turbine industry is growing along all vectors, with increasingly sprawling farms of ever-larger and more densely sited turbines producing growing amounts of power. But the laws of physics are stubborn - wind turbines remove kinetic energy from the atmospheric flow. So engineers and scientists have sought realistic estimates of the limits to large-scale wind generation. Such estimates could provide guidelines for the maximum size and density to which a wind turbine farm can increase before reaching a point of diminishing returns.

The limits of wind turbines

An international group of researchers recently collaborated on a comparison of two different methods of estimating the limits of power generation for wind farms, which has been reported in the Proceedings of the National Academy of Sciences. They approximated the dynamics by which wind turbines remove kinetic energy from the atmosphere using the vertical kinetic energy (VKE) flux method and compared the results to those from the Weather Research and Forecasting (WRF) regional atmospheric model.

Their findings are complex, and while the two techniques produce results that diverge in many ways, together, they illuminate atmospheric variables that are not obviously revealed by the two methods in isolation.

Read more at Phys.org

Image Credit: Steve Wilson / Wikipedia

-jk-