We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2017 was released on October 10th 2017. Its digital version will be available on October 10th 2017.

Topic: Electrical power engineering; RES; Fuel cells; Batteries and accumulators

Main Article
Electricity storage
Electrochemical impedance spectroscopy of batteries

SVĚTLO (Light) 5/2017 was released on September 18th 2017. Its digital version will be available on September 18th 2017.

Luminaires and luminous apparatuses
MAYBE STYLE introducing LED design luminaires of German producer Lightnet
TREVOS – new luminaires for industry and offices
How many types of LED panels produces MODUS?
Intelligent LED luminaire RENO PROFI

Interiors lighting
The light in indoor flat interior – questions and answers

Powering Ingestible Electronics With the Fluids in Your Gut

08.02.2017 | IEEE Spectrum | spectrum.ieee.org

Ingestible electronics that travel through the gut within pill-like capsules can now capture video, release drugs, and record temperature, pH, and other vital signs. However, most current ingestible electronics rely on conventional batteries, many of which require toxic materials.

Now researchers have developed ingestible electronics that harvest energy from chemical reactions with fluids in the gut. Their research enabled continuous temperature sensing and wireless communication for an average of 6.1 days in the guts of live pigs.

Ingestible electronics

The energy-harvesting galvanic cell the scientists developed relies on stomach or intestinal fluids to serve as the electrolyte bridging its zinc anode with its copper cathode. As the zinc dissolved, the device generated an average power of 0.23 microwatts per square millimeter of anode.

The current prototype devices are cylinders about 40 millimeters long and 12 millimeters in diameter. However, the researchers suggest that by building customized integrated circuits to better stack the components of the device, they could make the capsule three to five times smaller in volume.

Read more at IEEE Spectrum

Image Credit: Jenny Haupt, Cody Cleveland and Phillip Nadeau

-jk-