We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2018 was released on October 31th 2018. Its digital version will be available on November 30st 2018.

Topic: Switchboards and substations; Maintenance of electrical equipment; Rotating electrical machines and drives

Main Article
Smart Cities (part 4 – volume 1)

SVĚTLO (Light) 5/2018 was released on September 17th 2018. Its digital version will be available immediately.

Interiors lighting
Luminaire selection by the concept of interior
The unique book about interiors nowadays on market
Invitation on colloquium Interiéry 2018 – exceptional action for the seventh time

Newsreel
Profesor Jiří Habel passed away – memories remain

Power Harvesting Sensor Patch Uses Your Body As a Battery

18.01.2016 | NC State University | licensing.research.ncsu.edu

Thermoelectric Generators (TEGs) enable energy conversion from heat to electricity and have potential applications ranging from waste heat energy harvesting to small self-powered wearable medical devices.

Unfortunately, most flexible TEGs have lower performance due to the lower heat or electrical conductivity in the flexible semiconductors used. A team of engineers at NC State University has developed a flexible TEG design that combines the significant research and development investments in rigid semiconductor materials with advancements in flexible polymer chemistry.

Wearable electronics powered by human heat

By combining these elements the inventors have been able to design a TEG prototype which is significantly more flexible than alternative chemistries; successfully combining the benefits of both flexible and traditional TEG designs.

Advantages:

  • Flexible substrate combined with rigid semiconductor core enable high performance flexibility
  • Commercial off-the-shelf parts utilize industry standard materials with NC State’s unique device designs
  • High thermal and electrical conductivity through unique device geometry

Read more at NC State University

Image Credit: NC State University

-jk-