We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2018 was released on March 14th 2018. Its digital version will be available on March 14th 2018.

Topic: Amper 2018 – 26th International trade fair for electrical engineering

Main Article
Influence of magnetic storms on transformers of the power system

SVĚTLO (Light) 2/2018 was released on March 16th 2018. Its digital version will be available immediately.

Fairs and exhibitions
Interior elite again after year in Letňany

Luminaires and luminous apparatuses
Emergency lighting
The future of industrial lighting has name INNOVA
GOLY luminaire – the practical high bay luminaire
McLED® – brand name of first rate quality LED lighting
VOLGA EU luminaire our choice for Europe

Power Harvesting Sensor Patch Uses Your Body As a Battery

18.01.2016 | NC State University | licensing.research.ncsu.edu

Thermoelectric Generators (TEGs) enable energy conversion from heat to electricity and have potential applications ranging from waste heat energy harvesting to small self-powered wearable medical devices.

Unfortunately, most flexible TEGs have lower performance due to the lower heat or electrical conductivity in the flexible semiconductors used. A team of engineers at NC State University has developed a flexible TEG design that combines the significant research and development investments in rigid semiconductor materials with advancements in flexible polymer chemistry.

Wearable electronics powered by human heat

By combining these elements the inventors have been able to design a TEG prototype which is significantly more flexible than alternative chemistries; successfully combining the benefits of both flexible and traditional TEG designs.


  • Flexible substrate combined with rigid semiconductor core enable high performance flexibility
  • Commercial off-the-shelf parts utilize industry standard materials with NC State’s unique device designs
  • High thermal and electrical conductivity through unique device geometry

Read more at NC State University

Image Credit: NC State University