We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2018 was released on June 27th 2018. Its digital version will be available on July 27th 2018.

Topic: Cables, conductors and cable engineering; Tools, equipment and accessories for work with cables

Main Article
Parametrization of circuit models of Li-accumulators for electromobility
Smart Cities (part 3 – volume 1)

SVĚTLO (Light) 4/2018 was released on July 30th 2018. Its digital version will be available on August 31th 2018.

Refreshing our memory
Eccentric luminaires of René Roubíček from the years1965 till 1977
Bases of photometry – 1st part
Great personage of Czech science of times after Battle at Bílá hora: doctor, naturalist, philosopher and physicist Jan Marek Marci from Kronland

Optical radiation effects and use
The light and circadian rhythms

Oxford to build spectrograph for world’s largest optical telescope

26.05.2017 | University of Oxford | www.ox.ac.uk

University of Oxford researchers will lead the design and build of the HARMONI spectrograph for the European Extremely Large Telescope (E-ELT). The HARMONI project will provide the world’s largest visible and infrared telescope with unprecedented physical insights about objects in the distant Universe.

Perched on top of Cerro Armazones in the Atacama Desert of northern Chile, the E-ELT will have a giant main mirror 39 metres in diameter. The telescope will enable scientists to peer further into the history of the Universe, studying distant, young galaxies in great detail with better sensitivity than ever before — helping improve our understanding of the Universe, the effects of dark matter and energy, and planets outside of our solar system.

Largest telespoce in the world

When it is first used in 2024, the E-ELT will be equipped with three scientific instruments. One of these will be HARMONI, a spectrograph which splits the light from the object in the sky into its component wavelengths or colours. Astronomers can use these ‘spectra’ to determine far more than images alone ever can: they reveal the motion, temperature and chemical composition of structures imaged using the telescope.

Read more at University of Oxford

Image Credit: University of Oxford

-jk-