We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2016 was released on November 7th 2016. Its digital version will be available on December 1st 2016.

 

Topic: Switchboards and switchboard engineering; Rotating electrical machines and power electronics; Maintenance of EE

 

Main Article

Lithium traction batteries for electric mobility (part 1)

SVĚTLO (Light) 6/2016 was released on December 5th 2016. Its digital version will be available on January 5th 2017.

Interiors lighting
Colloquium Interiors 2016 – the fifth anniversary
Cooperation of indoor interior and lighting 

Standards, regulations and recommendations
New standards for road lighting

Nuclear Waste Deep Storage Plans Approved

18.11.2015 | IEEE Spectrum | www.spectrum.ieee.org

Finland’s government issued a construction license to nuclear disposal consortium Posiva. The license gives the group approval to build a storage facility on Olkiluoto Island, Finland, designed to last 100,000 years.

The facility would be the first of its kind in the world. Since the beginning of the nuclear power age, energy firms have paid to store nuclear waste in temporary holding ponds unlikely to last more than a couple of centuries. The Posiva facility, decades in the planning, may pioneer a more sustainable era of disposal.

New nuclear disposal facility in Finland

Nuclear waste consists of metal rods composed mostly of uranium with a molecular weight of 238. Over time, the depleted uranium atoms release radioactive particles - a process called decay - that converts the uranium into lighter elements. Over billions of years, those atoms decay, too. By the end, all that is left is lead.

To provide safer and more permanent storage, Posiva proposes to bury electrically-welded iron-and-copper capsules 400 meters underground. The capsules would be surrounded by clay barriers and capped with rubble and cement. The facility, which would have a 6,500 metric ton capacity, could likely hold Finland and Sweden's projected future nuclear waste. But that capacity doesn’t come close to the volume required by larger nations such as the United States, which has over 70,000 metric tons of waste piled up, and produces an additional 2,200 tons a year.

Read more at IEEE Spectrum

Image Credit: Posiva

-jk-