We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2018 was released on February 14th 2018. Its digital version will be available on March 12th 2018.

Topic: Electrical devices; Devices for smart grids; Internet of Things

Main Article
Power flow control in grid using power converters

SVĚTLO (Light) 1/2018 was released on February 5th 2018. Its digital version will be available on March 5th 2018.

Architectural and scenic lighting
Mexican light
Lighting design in a nutshell – Part 34
Lighting technology documentation – part 2 Schemes for scenic lighting

Luminaires and luminous apparatuses
NITECO LED luminaires – guarantied lifespan and warm white light not only for public lighting

Non-toxic alternative for next-generation solar cells

18.07.2017 | University of Cambridge | www.cam.ac.uk

The team of researchers, from the University of Cambridge and the United States, have used theoretical and experimental methods to show how bismuth – the so-called “green element” which sits next to lead on the periodic table, could be used in low-cost solar cells.

Their results, reported in the journal Advanced Materials, suggest that solar cells incorporating bismuth can replicate the properties that enable the exceptional properties of lead-based solar cells, but without the same toxicity concerns. Later calculations by another research group showed that bismuth-based cells can convert light into energy at efficiencies up to 22%, which is comparable to the most advanced solar cells currently on the market.

Non-toxic solar cells

“We wanted to find out why defects don’t appear to affect the performance of lead-halide perovskite solar cells as much as they would in other materials,” said Dr Robert Hoye of Cambridge’s Cavendish Laboratory and Department of Materials Science & Metallurgy, and the paper’s lead author. “If we can figure out what’s special about them, then perhaps we can replicate their properties using non-toxic materials.”

Read more at University of Cambridge

Image Credit: University of Cambridge

-jk-