We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 1/2020 was released on January 20th 2020. Its digital version will be available on February 12th 2020.

Topic: Electrotechnology; Materials for electrical engineering; Wiring materia

Main Article
Using mHealth technolgy for automated data collection and transmission

SVĚTLO (Light) 6/2019 was released on December 9th 2019. Its digital version will be available on January 9th 2020.

Professional organizations activities
Light technology konference of Visegrád countries LUMEN V4 2020 – 1st announcement
23rd International conference SVĚTLO – LIGHT 2019
56th Conference of Society for development public lighting in Plzeň
What is new in CIE

Interiors lighting
Halla illuminated new Booking.com offices in Prague centre

Next-gen solar cells spin in new direction

24.06.2019 | Flinders University | www.flinders.edu.au

A new nanomaterial made from phosphorus, known as phosphorene, is shaping up as a key ingredient for more sustainable and efficient next-generation perovskite solar cells (PSCs).

PSCs which are one of the fastest developing new solar technologies and can achieve efficiencies comparable to more commonly used commercially available silicon solar cells. For the first time, an international team of clean chemistry researchers led by Professor Joseph Shapter and Flinders University, has made very thin phosphorene nanosheets for low-temperature PSCs using the rapid shear stress of the University’s revolutionary vortex fluidic device (VFD).

Perovskite solar cells using phosphorene

We’ve found exciting new way to convert exfoliated black phosphorus into phosphorene which can help produce more efficient and also potentially cheaper solar cells,” says Dr Christopher Gibson, from the College of Science and Engineering at Flinders University. “Our latest experiments have improved the potential of phosphorene in solar cells, showing an extra Star efficiency of 2%-3% in electricity production.”

Read more at Flinders University

Image Credit: Joe Shapter

-jk-