We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 1/2019 was released on January 16th 2019. Its digital version will be available on February 12th 2019.

Topic: Electrotechnology; Materials for electrical engineering; Wiring material

Main Article
Electrically conductive adhesives for electrical engineering
Smart Cities (part 6)

SVĚTLO (Light) 6/2018 was released on December 3rd 2018. Its digital version will be available on January 4th 2019.

Luminaires and light apparatuses
Modular floodlights Siteco
Decorative luminaire PRESBETON H-E-X from the integral series town equipment
LED luminaires ESALITE – revolution in sphere of industrial lighting

Daylight
About median illumination by daylight
Professional colloquium Daylight in practice

Next-gen flexible robots move and heal like us

05.01.2018 | University of Colorado Boulder | www.colorado.edu

In the basement of the Engineering Center at CU Boulder, a group of researchers is working to create the next generation of robots. But instead of the metallic droids you may be imagining, these robots are made from soft materials that react to applied voltage with a wide range of motions.

A central challenge in the field known as “soft robotics” is a lack of actuators or “artificial muscles” that can replicate the versatility and performance of the real thing. The Keplinger Research Group in the College of Engineering and Applied Science has developed a new class of soft, electrically activated devices capable of mimicking the expansion and contraction of natural muscles.

Flexible robots of next generation

The newly developed hydraulically amplified self-healing electrostatic (HASEL) actuators eschew the bulky, rigid pistons and motors of conventional robots for soft structures that exceed or match the strength, speed and efficiency of biological muscle. Their versatility may enable artificial muscles for human-like robots and a next generation of prosthetic limbs.

Read more at University of Colorado Boulder

Image Credit: Glenn Asakawa/University of Colorado Boulder

-jk-