We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 2/2018 was released on February 14th 2018. Its digital version will be available on March 12th 2018.

Topic: Electrical devices; Devices for smart grids; Internet of Things

Main Article
Power flow control in grid using power converters

SVĚTLO (Light) 1/2018 was released on February 5th 2018. Its digital version will be available on March 5th 2018.

Architectural and scenic lighting
Mexican light
Lighting design in a nutshell – Part 34
Lighting technology documentation – part 2 Schemes for scenic lighting

Luminaires and luminous apparatuses
NITECO LED luminaires – guarantied lifespan and warm white light not only for public lighting

New type of soft, growing robot

21.07.2017 | Stanford University | news.stanford.edu

Imagine rescuers searching for people in the rubble of a collapsed building. Instead of digging through the debris by hand or having dogs sniff for signs of life, they bring out a small, air-tight cylinder. They place the device at the entrance of the debris and flip a switch. From one end of the cylinder, a tendril extends into the mass of stones and dirt, like a fast-climbing vine. A camera at the tip of the tendril gives rescuers a view of the otherwise unreachable places beneath the rubble.

This is just one possible application of a new type of robot created by mechanical engineers at Stanford University, detailed in a June 19 Science Robotics paper. Inspired by natural organisms that cover distance by growing – such as vines, fungi and nerve cells – the researchers have made a proof of concept of their soft, growing robot and have run it through some challenging tests.

New type of growing robot

The basic idea behind this robot is straightforward. It’s a tube of soft material folded inside itself, like an inside-out sock, that grows in one direction when the material at the front of the tube everts, as the tube becomes right-side-out. In the prototypes, the material was a thin, cheap plastic and the robot body everted when the scientists pumped pressurized air into the stationary end. In other versions, fluid could replace the pressurized air. What makes this robot design extremely useful is that the design results in movement of the tip without movement of the body.

Read more at Stanford University

Image Credit: L.A. Cicero

-jk-