We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2020 was released on March 13th 2020. Its digital version will be available immediately.

Topic: Trends in electrical engineering

Main Article
Use of frequency converter for experimentational device

SVĚTLO (Light) 2/2020 was released on March 6th 2020. Its digital version will be available immediately.

Market, business, enterprise
BOOBA in new showroom, which surpassed all expectations
Discourse with Technology of Capital city Prague chairman of management

Day light
Diagram of overshadow for 21st march
Modern methods of gaining dates for processing lighting technology assessment

New sensor could help prevent food waste

24. 3. 2020 | MIT | www.mit.edu

As flowers bloom and fruits ripen, they emit a colorless, sweet-smelling gas called ethylene. MIT chemists have now created a tiny sensor that can detect this gas in concentrations as low as 15 parts per billion, which they believe could be useful in preventing food spoilage.

The sensor, which is made from semiconducting cylinders called carbon nanotubes, could be used to monitor fruit and vegetables as they are shipped and stored, helping to reduce food waste. In addition to its natural role as a plant hormone, ethylene is also the world’s most widely manufactured organic compound and is used to manufacture products such as plastics and clothing. A detector for ethylene could also be useful for monitoring this kind of industrial ethylene manufacturing.

Ethylene sensor

Researchers created a new kind of ethylene sensor that is also based on carbon nanotubes but works by an entirely different mechanism, known as Wacker oxidation. Instead of incorporating a metal such as copper that binds directly to ethylene, they used a metal catalyst called palladium that adds oxygen to ethylene during a process called oxidation.

Read more at MIT

Image Credit: Unsplash

-jk-