We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 1/2017 was released on January 18th 2017. Its digital version will be available on February 17th 2017.

 

Topic: Electrotechnology; Materials for electrical engineering; Equipment and accessories; Marking

 

Main Article

Data analysis of photovoltaic system during an eclipse

Risk of wiring of biometric identification systems

SVĚTLO (Light) 6/2016 was released on December 5th 2016. Its digital version will be available on January 5th 2017.

Interiors lighting
Colloquium Interiors 2016 – the fifth anniversary
Cooperation of indoor interior and lighting 

Standards, regulations and recommendations
New standards for road lighting

New ‘Self-Healing’ Gel Makes Electronics More Flexible

27.11.2015 | The University of Texas at Austin | news.utexas.edu

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the development of flexible electronics, biosensors and batteries as energy storage devices.

Although technology is moving toward lighter, flexible, foldable and rollable electronics, the existing circuits that power them are not built to flex freely and repeatedly self-repair cracks or breaks that can happen from normal wear and tear.

Self-regenerating gel for electronics

Until now, self-healing materials have relied on application of external stimuli such as light or heat to activate repair. The UT Austin “supergel” material has high conductivity (the degree to which a material conducts electricity) and strong mechanical and electrical self-healing properties.

Researchers used a disc-shaped liquid crystal molecule to enhance the conductivity, biocompatibility and permeability of their polymer hydrogel. They were able to achieve about 10 times the conductivity of other polymer hydrogels used in bioelectronics and conventional rechargeable batteries. The nanostructures that make up the gel are the smallest structures capable of providing efficient charge and energy transport.

Read more at The University of Texas at Austin

Image Credit: The University of Texas at Austin

-jk-