We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 7/2019 was released on June 26th 2019. Its digital version will be available on July 26th 2019.

Topic: Cables, conductors and cable engineering, Tools, equipment and accessories for work with cables

Main Article
Asset management and diagnostic needs in Industry 4.0

SVĚTLO (Light) 3/2019 was released on June 11th 2019. Its digital version will be available on July 15th 2019.

Fairs and exhibitions
Euroluce 2019 by designers eyes
Exhibition Light in architecture 2019
Amper 2019 in capture of sophisticated technologies

Refreshing our memory
Lighting glass from Kamenný pahorek

New record temperature for a superconductor

21.08.2015 | Ars Technica; Johannes Gutenberg University | www.arstechnica.com

Superconductivity was first seen in metals cooled down to close to absolute zero. But after exhausting every metal on the periodic table, the critical temperature at which the metal transitions to superconductivity never budged far from those extremely low temperatures.

That changed dramatically with the development of cuprate superconductors, copper-containing ceramics that could superconduct in liquid nitrogen - still very cold (138K or - 135°C), but relatively easy to achieve. But progress has stalled, in part because we don't have a solid theory to explain superconductivity in these materials.

New temperatures in superconductor

Now, taking advantage of the fact that we do understand what's going on in superconducting metals, a German research team has reached a new record critical temperature: 203K, or -70°C, a temperature that is sometimes seen in polar regions. The material they used, however, isn't a metal that appears on the periodic table. In fact, they're not even positive they know what the material is, just that it forms from hydrogen sulfide at extreme pressures.

Read more at Ars Technica

Image Credit: Brookhaven National Lab

-jk-