We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2016 was released on September 27th 2016. Its digital version will be available on October 27th 2016.


Topic: 22nd International trade fair ELO SYS 2016; Electrical Power Engineering; RES; Emergency Power Units


Main Article

Power system management under utilization of Smart Grid system

Printed edition of SVĚTLO (Light) 5/2016 was released on September 19th 2016. Its digital version will be available immediately.


Standards, regulations and recommendations

Regulation No 10/2016 (Prague building code) from the view of building lighting technology


Lighting installations

PROLICHT CZECH – supplier of lighting for new SAP offices

Hold up the light to see in work your work

Modern and saving LED lifting of swimming pool hall

New nanomaterial offers promise in bendable, wearable electronic devices

13.06.2016 | University of Illinois at Chicago | news.uic.edu

An ultrathin film that is both transparent and highly conductive to electric current has been produced by a cheap and simple method devised by an international team of nanomaterials researchers from the University of Illinois at Chicago and Korea University.

The film – actually a mat of tangled nanofiber, electroplated to form a “self-junctioned copper nano-chicken wire‚ – is also bendable and stretchable, offering potential applications in roll-up touchscreen displays, wearable electronics, flexible solar cells and electronic skin.

New nanomaterial

The new film establishes a “world-record combination of high transparency and low electrical resistance,” the latter at least 10-fold greater than the previous existing record, said Sam Yoon, who is also a corresponding author and a professor of mechanical engineering at Korea University.

The film also retains its properties after repeated cycles of severe stretching or bending, which is an important property for touchscreens or wearables.

Read more at University of Illinois at Chicago

Image Credit: University of Illinois at Chicago