We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2017 was released on October 10th 2017. Its digital version will be available on October 10th 2017.

Topic: Electrical power engineering; RES; Fuel cells; Batteries and accumulators

Main Article
Electricity storage
Electrochemical impedance spectroscopy of batteries

SVĚTLO (Light) 5/2017 was released on September 18th 2017. Its digital version will be available on September 18th 2017.

Luminaires and luminous apparatuses
MAYBE STYLE introducing LED design luminaires of German producer Lightnet
TREVOS – new luminaires for industry and offices
How many types of LED panels produces MODUS?
Intelligent LED luminaire RENO PROFI

Interiors lighting
The light in indoor flat interior – questions and answers

New nanomaterial offers promise in bendable, wearable electronic devices

13.06.2016 | University of Illinois at Chicago | news.uic.edu

An ultrathin film that is both transparent and highly conductive to electric current has been produced by a cheap and simple method devised by an international team of nanomaterials researchers from the University of Illinois at Chicago and Korea University.

The film – actually a mat of tangled nanofiber, electroplated to form a “self-junctioned copper nano-chicken wire‚ – is also bendable and stretchable, offering potential applications in roll-up touchscreen displays, wearable electronics, flexible solar cells and electronic skin.

New nanomaterial

The new film establishes a “world-record combination of high transparency and low electrical resistance,” the latter at least 10-fold greater than the previous existing record, said Sam Yoon, who is also a corresponding author and a professor of mechanical engineering at Korea University.

The film also retains its properties after repeated cycles of severe stretching or bending, which is an important property for touchscreens or wearables.

Read more at University of Illinois at Chicago

Image Credit: University of Illinois at Chicago

-jk-