We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 10/2016 was released on September 27th 2016. Its digital version will be available on October 27th 2016.


Topic: 22nd International trade fair ELO SYS 2016; Electrical Power Engineering; RES; Emergency Power Units


Main Article

Power system management under utilization of Smart Grid system

Printed edition of SVĚTLO (Light) 5/2016 was released on September 19th 2016. Its digital version will be available immediately.


Standards, regulations and recommendations

Regulation No 10/2016 (Prague building code) from the view of building lighting technology


Lighting installations

PROLICHT CZECH – supplier of lighting for new SAP offices

Hold up the light to see in work your work

Modern and saving LED lifting of swimming pool hall

New method for effective production of hydrogen peroxide for fuel cells

23.05.2016 | Phys.org | www.phys.org

Scientists have used sunlight to turn seawater (H2O) into hydrogen peroxide (H2O2), which can then be used in fuel cells to generate electricity. It is the first photocatalytic method of H2O2 production that achieves a high enough efficiency so that the H2O2 can be used in a fuel cell.

In the new study, the researchers led by Shunichi Fukuzumi at Osaka University, developed a new photoelectrochemical cell, which is basically a solar cell that produces H2O2. When sunlight illuminates the photocatalyst, the photocatalyst absorbs photons and uses the energy to initiate chemical reactions (seawater oxidation and the reduction of O2) in a way that ultimately produces H2O2.

New method for production of H2O2

After illuminating the cell for 24 hours, the concentration of H2O2 in the seawater reached about 48 mM, which greatly exceeds previous reported values of about 2 mM in pure water. Investigating the reason for this big difference, the researchers found that the negatively charged chlorine in seawater is mainly responsible for enhancing the photocatalytic activity and yielding the higher concentration.

Overall, the system has a total solar-to-electricity efficiency of 0.28%. (The photocatalytic production of H2O2 from seawater has an efficiency of 0.55%, and the fuel cell has an efficiency of 50%.)

Read more at Phys.org

Image Credit: Adobe Stock