We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 12/2017 was released on December 6th 2017. Its digital version will be available on January 5th 2018.

Topic: Measurement, measuring devices and engineering; Testing and diagnostics

Main Article
Measurements on rotating machines using SFRA method
Application possibilities of ultra-capacitors or LiFePO4 batteries in trolley network of the Brno Public Transit Company

SVĚTLO (Light) 5/2017 was released on September 18th 2017. Its digital version will be available on September 18th 2017.

Luminaires and luminous apparatuses
MAYBE STYLE introducing LED design luminaires of German producer Lightnet
TREVOS – new luminaires for industry and offices
How many types of LED panels produces MODUS?
Intelligent LED luminaire RENO PROFI

Interiors lighting
The light in indoor flat interior – questions and answers

New metamaterial can switch from hard to soft

25.01.2017 | University of Michigan | ns.umich.edu

When a material is made, you typically cannot change whether that material is hard or soft. But a group of University of Michigan researchers have developed a new way to design a “metamaterial” that allows the material to switch between being hard and soft without damaging or altering the material itself.

Metamaterials are man-made materials that get their properties—in this case, whether a material is hard or soft—from the way the material is constructed rather than the material that constructs it. This allows researchers to manipulate a metamaterial's structure in order to make the material exhibit a certain property.

New metamaterial

In the group's study the U-M researchers discovered a way to compose a metamaterial that can be easily manipulated to increase the stiffness of its surface by orders of magnitude—the difference between rubber and steel. The material could one day be used to build cars or rocket launch systems. In cars, the material could help absorb impacts from a crash. The researchers also suggest the material could be used to make bicycle tires that could self-adjust to ride more easily on soft surfaces such as sand, or to make damage-resistant, reusable rockets.

Read more at University of Michigan

Image Credit: Adobe Stock

-jk-