We Continue the Work of Those
Who Were the First.

  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 11/2017 was released on November 6th 2017. Its digital version will be available on November 27th 2017.

Topic: Electrical distribution switchboards and switchboard technology; Rotating electrical machines

Main Article
Analysis of the CFD settings for simulating the temperature field of sinusoidal filter
On-line optimisation of current commutation angles in phases of BLDC motor

SVĚTLO (Light) 5/2017 was released on September 18th 2017. Its digital version will be available on September 18th 2017.

Luminaires and luminous apparatuses
MAYBE STYLE introducing LED design luminaires of German producer Lightnet
TREVOS – new luminaires for industry and offices
How many types of LED panels produces MODUS?
Intelligent LED luminaire RENO PROFI

Interiors lighting
The light in indoor flat interior – questions and answers

New Material May Help Cut Battery Costs for Electric Cars

07.07.2017 | University of Texas at Dallas | www.utdallas.edu

In the battle of the batteries, lithium-ion technology is the reigning champion, powering that cellphone in your pocket as well as an increasing number of electric vehicles on the road. 

But a novel manganese and sodium-ion-based material developed at The University of Texas at Dallas, in collaboration with Seoul National University, might become a contender, offering a potentially lower-cost, more ecofriendly option to fuel next-generation devices and electric cars.

New type of material for batteries

The research team's sodium-ion design, which retains the high energy density of a lithium-ion cathode, replaces most of the lithium atoms (green) with sodium (yellow). The layered structure of the new material also incorporates manganese (purple) and oxygen (red).

A battery consists of a positive electrode, or cathode; a negative electrode, or anode; and an electrolyte in between. In a standard lithium-ion battery, the cathode is made of lithium, cobalt, nickel and oxygen, while the anode is made of graphite, a type of carbon. When the battery charges, lithium ions move through the electrolyte to the anode and attach to the carbon. During discharge, the lithium ions move back to the cathode and provide electric energy to run devices.

Read more at University of Texas at Dallas

Image Credit: University of Texas at Dallas

-jk-