We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 3/2020 was released on March 13th 2020. Its digital version will be available immediately.

Topic: Trends in electrical engineering

Main Article
Use of frequency converter for experimentational device

SVĚTLO (Light) 2/2020 was released on March 6th 2020. Its digital version will be available immediately.

Market, business, enterprise
BOOBA in new showroom, which surpassed all expectations
Discourse with Technology of Capital city Prague chairman of management

Day light
Diagram of overshadow for 21st march
Modern methods of gaining dates for processing lighting technology assessment

New Material Holds Promise for More Secure Computing

27. 2. 2019 | University of Texas at Austin | www.utexas.edu

As computers advance, encryption methods currently used to keep everything from financial transactions to military secrets secure might soon be useless, technology experts warn. Team of physicists and engineers report they have created a material with light-emitting properties that might enable hack-proof communications, guaranteed by the laws of quantum mechanics.

Their new material, created by stacking two layers of atomically thin materials, absorbs energy from light and emits new photons, or particles of light, in such a way that the researchers interpret the material to contain thousands of identical "single-photon emitters." If confirmed, such a novel light source could be used as part of a new, hack-proof method of securing information.

New material for safer computing

The method for creating such ultrathin atomic sheets is remarkably simple. Scientists use scotch tape to peel off individual layers from a crystal. By stacking two different layers on top of each other and slightly rotating them relative to each other, the scientists created an artificial crystal with a regularly spaced pattern of atoms. Such a pattern is known as a moiré crystal, which localizes electrons into a tight space on the order of a nanometer, about a thousand times smaller than a bacterium.

Read more at University of Texas at Austin

Image Credit: University of Texas at Austin