We Continue the Work of Those
Who Were the First.

  • Electrotechnics
  • Electrical Engineering
  • Light & Lighting
  • Power Engineering
  • Transportation
  • Automation
  • Communication
  • Smart Buildings
  • Industry
  • Innovation

Current issue

ELEKTRO 8-9/2019 was released on September 3rd 2019. Its digital version will be available immediately.

Topic: Electrical engineering in industry; 61th International Engineering Fair in Brno

Main Article
Residual current devices – overview and usage

SVĚTLO (Light) 5/2019 was released on September 16th 2019. Its digital version will be available immediately.

Professional organizations activities
International conference LIGHT (SVĚTLO) 2019 – 6th announcement
We participated in International commission on illumination CIE 2019 congress in Washington
Technical colloquium SLOVALUX 2019

Fairs and exhibitions
Inspire with boho styl and design of Far East at autumn fair FOR INTERIOR

New Material Holds Promise for More Secure Computing

27.02.2019 | University of Texas at Austin | www.utexas.edu

As computers advance, encryption methods currently used to keep everything from financial transactions to military secrets secure might soon be useless, technology experts warn. Team of physicists and engineers report they have created a material with light-emitting properties that might enable hack-proof communications, guaranteed by the laws of quantum mechanics.

Their new material, created by stacking two layers of atomically thin materials, absorbs energy from light and emits new photons, or particles of light, in such a way that the researchers interpret the material to contain thousands of identical "single-photon emitters." If confirmed, such a novel light source could be used as part of a new, hack-proof method of securing information.

New material for safer computing

The method for creating such ultrathin atomic sheets is remarkably simple. Scientists use scotch tape to peel off individual layers from a crystal. By stacking two different layers on top of each other and slightly rotating them relative to each other, the scientists created an artificial crystal with a regularly spaced pattern of atoms. Such a pattern is known as a moiré crystal, which localizes electrons into a tight space on the order of a nanometer, about a thousand times smaller than a bacterium.

Read more at University of Texas at Austin

Image Credit: University of Texas at Austin

-jk-